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Abstract. The integration of Software-Defined Network (SDN) and
Network Function Virtualization (NFV) is an innovative network archi-
tecture that abstracts lower-level functionalities through the separation
of the control plane from the data plane and enhances the management of
network behavior and network services in real time. It provides unprece-
dented programmability, automation, and control for network dynamics.
In this paper, we propose a flexible and elastic network security service
management system for timely reacting to abnormal network behavior
by orchestrating network security functions based on the technology of
SDN/NFV. In designing the system, we address key challenges associated
with scalability, responsiveness, and adversary resilience. The proposed
system provides a real time and lightweight monitoring and response
function by integrating security functions in the SDN/NFV domain. The
SDN automatically learns the network conditions to orchestrate secu-
rity functions for effective monitoring against attacks. The system is
implemented based on an open-source SDN controller, RYU, and con-
sists of three main agents; network monitoring, orchestration agents, and
response agents. Experimental results have shown that our approach
achieved low network latency with small memory usages for virtual intru-
sion detection systems.

1 Introduction

Software-defined networking (SDN) and Network Function Virtualization (NFV)
provide new ways to enable the introduction of sophisticated network control
for security and dependability. The advent of SDN/NFV has shifted the tra-
ditional perspective of the network from ossified hardware-based networks to
programmable software-based networks [10]. It introduces significant granular-
ity, visibility, flexibility, and elasticity to networking by decoupling the control
plane in network devices from the data plane and through virtualization. A con-
trol program can automatically react to dynamic changes of the network state
and thus maintain the high-level policies in place. The centralization of the con-
trol logic in a controller with global knowledge of the network state simplifies the
c© Springer Nature Switzerland AG 2021
H. Kim (Ed.): WISA 2021, LNCS 13009, pp. 231–242, 2021.
https://doi.org/10.1007/978-3-030-89432-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89432-0_19&domain=pdf
http://orcid.org/0000-0002-0605-278X
http://orcid.org/0000-0003-0651-2384
https://doi.org/10.1007/978-3-030-89432-0_19


232 P. Ganta et al.

development of more sophisticated network functions. This ability to program
the network and to control the underlying data plane is therefore the crucial value
proposition of SDN/NFV and opens new opportunities to implement responsive
actions to networks under attack in a timely manner.

SDN/NFV shift traditional perspectives on defense methods in a new direc-
tion against attacks in real time. It provides programmability, flexibility, and
scalability not possible in traditional computer networks, which facilitates logi-
cally centralized control and automation [10]. These capabilities provide insight
into network behavior that can be used to automatically detect malicious net-
work attacks. However, previous work has addressed specific attacks in the dif-
ferent layers of SDN instead of using both SDN and NFV to develop defense
methods [11,17,19]. A few of the previous works have focused on the integrated
security services between SDN and NFV. Furthermore, most previous works
have studied the internal security problems of SDN or NFV in terms of software
vulnerabilities. Now, it is important to develop a general centralized security ser-
vice system that automatically reacts to unpredictable changes in the network
states and initiates actions to deploy countermeasures against any attack in the
intrusion detection and response systems. However, it has been passive to deploy
hardware or software IDS in fixed locations that cause many disadvantages, such
as low attack detection rates, low resource utilization, and little flexibility against
zero-day attacks. For an effective defense system, a timely response action should
be implemented and function properly in countering various attacks, especially
on a real-time basis.

This paper proposes an adaptive network security orchestration system to
dynamically and effectively deploy security functions and detect various attacks
in real time. It is an intelligent and automatic framework integrated with
SDN/NFV to be reactive to real time network behavior. This framework orches-
trates virtual security functions into the network while monitoring real-time traf-
fic to detect network attacks. The southbound interfaces that communicate with
the switches deploy these security functions with the help of SDN. The proposed
framework consists of three agents: a network monitoring agent, an orchestra-
tion agent, and a response agent. The network monitoring agent collects network
statistical data to continuously monitor network states and evaluates the best
routing path to monitor and detect network abnormalities in real time. The
orchestration agent retrieves state information to dynamically deploy security
functions for intrusion detection. The response agent dynamically changes net-
work states to make the network safe while initiating an appropriate action into
the network based on the reactive routing in SDN. The three agents keep inter-
acting with the SDN controller for centralized monitoring and controlling of the
entire network space. Our experimental results demonstrate the effectiveness of
this framework to distribute virtual security functions with a reasonable network
and system overhead. The results give us the insight to help the SDN controller
with NFV properly react to known or unknown attacks by orchestrating a set
of light security functions in real time.
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Our first contribution is to propose an intelligent and autonomous orchestra-
tion system that can effectively react to network threats by utilizing SDN/NFV.
In addition, we develop a lightweight orchestration agent by using containeriza-
tion technology in order to deploy various security functions while monitoring
network states. Finally, based on the programmability of SDN/NFV, we develop
a resource-efficient security service system for real-time network intrusion detec-
tion and response system. Lastly, this paper implements the proposed system
with open sources and evaluates the proposed framework in a real cloud envi-
ronment.

The rest of the paper is organized as follows. Section 2 presents our new pro-
posed framework. In Sect. 3, we evaluate our framework and show experimental
results with the implementation details. In the rest of the sections, we discuss
related work and state our conclusions.

2 System Architecture

This section presents our proposed framework to respond to network threats
by using the orchestration service while leveraging the programmability and
automation offered in SDN/NFV. The system consists of three main agents:
a network monitoring agent, an orchestration agent, and a response agent, as
shown in Fig. 1. First, the network monitoring agent has a traffic analyzer and
a network measurement feature to keep track of real-time network status and
conditions. Second, the orchestration agent determines the most appropriate
reaction from real-time network states to monitor network behavior for intrusion
detection. Lastly, the response agent takes reactive action to defend against
network abnormalities for intrusion detection. A detailed explanation follows.

2.1 A Network Monitoring Agent

The network monitoring agent records statistical information and measures net-
work usage in order to identify the current network state through the SDN
controller. It analyzes traffic by byte rates and the number of packets according
to each port and each protocol. It determines the network effective bandwidth to
decide the number of security service functions per node while avoiding network
congestion points. Network monitoring is an essential building block to initially
understand the network situation and deploy a set of security functions to detect
network abnormalities.

The SDN controller periodically polls statistical information from switches.
The data includes topology information, switch information, and statistics about
flow rules and packets. We compute the overall usage of the links in a network
by using the number of bytes and the number of packets both for each port and
each protocol to determine the routing path for incoming traffic. Also, the traffic
classification module captures protocols that contribute the most traffic to the
currently utilized bandwidth. Having identified these protocols, the correspond-
ing flow rules are selected and pushed to the switch under consideration. As
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Fig. 1. System architecture

mentioned earlier, traffic classification is carried out in a fine-grained manner,
that is, in a per-switch per-port manner, and this granularity makes it possible
to deploy flow rules only on the switches that require them. Matching flow rule
actions drop the selected packets and allow the same when the traffic rate for the
particular protocol reduces. If the protocol-specific usage is relatively high, and
the control is passed over to the flow-rule manager for threat responses, the drop
action would be selected for the protocol with the highest protocol-specific usage.
The system then observes the protocol-specific usage for subsequent iterations
and then issues an allow flow rule on the switch to return it to normal behavior. It
is important to understand that the flow rules are pushed on individual switches
and not all of them, and hence even when a drop action is selected for a particu-
lar protocol on some switch, the rest of the network functions unchanged. Also,
there are multiple routes present in the network for all the hosts, so the packets
can still be routed using alternative paths. Protocol-specific network utilization
is defined as how much bandwidth is occupied by a certain protocol (e.g. TCP,
UDP, ICMP, HTTP, and DNS) out of the total current used bandwidth. This
provides a method to identify specific network congestion locations for efficient
orchestration services.

2.2 An Orchestration Agent

The orchestration agent aims to orchestrate virtual network security functions
to edge devices dynamically based on the network traffic to that device. As
shown in Fig. 1, the orchestration agent has two main components: container
management and signature management. The container management monitors
system resources and network utilization to determine the number of contain-
ers for orchestration services. The signature management decides a set of the
Snort rules based on the input from the network monitoring agent. Finally, the
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agent can orchestrate a set of virtual security functions in SDN to monitoring
real-time traffic and detect network attacks. The SDN controller keeps moni-
toring the network flow to orchestrate the virtual security functions on remote
devices for intrusion detection. As multiple functions need to be executed on the
same edge devices, it is important to design a lightweight orchestration service
like container orchestration. The controller receives the network status informa-
tion from the network monitoring agent and the orchestration agent deploys a
container with a software-based IDS. To achieve this goal, it is significant to
develop a lightweight orchestration service since the existing orchestration ser-
vices require a lot of system resources. For example, Kubernetes and OpenShift
have a minimum resource requirement of 8 Gigabytes of physical memory on the
master and slave nodes. It is impossible to multiple security services on the same
edge devices. To overcome resource limitations, we develop a new orchestration
security service system by using Docker with Snort since the Docker needs only
minimal physical memory as 256 megabytes. The Docker can be used to integrate
and communicate with docker daemons running in remote hosts. To implement
virtual security functions, this system utilizes Snort on the Docker. However,
instead of including all the signature files in Snort, each signature file is dynam-
ically loading into Snort according to protocol types. For example, under HTTP
traffic, the security function includes only signature files related to TCP and
HTTP by excluding other protocol-related signatures, such as DNS, UDP, or
ICMPE. By dynamically controlling each security function, we can optimize the
signature matching process in parallel by orchestrating these security services
on the designated path in the network.

2.3 A Response Agent

The response agent is a reactive action to control network behavior when each
security functions report alerts by using the reactive routing function of SDN.
It has two reaction actions: bandwidth management and flow rule management.
First, the Bandwidth Manager can be thought of as an interface for a south-
bound API to modify the bandwidth of the switch. The value of the bandwidth
is determined by the orchestration agent, making it possible for the system to
scale up and scale down the bandwidth as needed. The agent can select the best
bandwidth based on the input of the network monitoring agent. There are many
network attacks that can be countered by just modifying the network bandwidth
to some extent. According to attack detection and congestion points, the SDN
controller can control bandwidth according to the results of each security func-
tion. Second, the flow rule manager is another interface for a southbound API
to update flow rules on the switch. This API sends an OpenFlow message to the
particular switch to indicate the update in the flow table. With the help of this
API, the framework can add, modify, and remove rules corresponding to various
packets. When each security function detects attacks, the SDN controller can
update flow rules in real time. For example, under the HTTP flooding attacks,
the reactive action could be to limit or stop the incoming HTTP traffic to a
particular switch or host in the network according to the report of the security
functions.
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3 Evaluation

This section evaluates our proposed orchestration system in terms of network
efficiency and overhead in CloudLab, an open cloud infrastructure supported
by NSF (National Science Foundation). We will discuss our implementation,
experimental setup, and experimental results in the following sections.

3.1 Implementation

We implement the proposed system (i.e. application) based on RYU [1], an open-
source SDN controller with Docker and Snort. RYU is an event-driven SDN
controller developed in the Python programming language. It is modular and
relatively simple to understand. The event-driven nature of the controller essen-
tially boils down to the concept of event handlers and event listeners. The imple-
mentation of the framework spans across a library and an internal component
integrated with the existing RYU code with Open vSwitch (OVS) and OVSDB.
Docker is an application containerization technology that isolates the operating
system from the application. This isolation helps us to run multiple applications
of Snort, in parallel and each having its own secure environment called a con-
tainer. There are three main components of the Docker Engine: Docker daemon,
REST API, and client. In the current architecture, the proposed system is a
client application running alongside the controller which is connected to docker
daemons on all switches in the topology. To ensure a secure connection, a TLS
handshake is enabled between the daemon and the client. Snort architecture
consists of multiple modules. For Snort to read a packet on an interface to flag
an alert or to allow the packet, all these modules should perform their operations
consistently. For experimentation purposes, Snort will be packaged into a docker
image with necessary configurations. It includes all the snort rules, community,
and registered, categorized into 34 different sets based on their application layer
protocol. A configuration file is also included for each set to specify rules. The
container orchestration service is a python flask web service listening locally for
any incoming requests from the controller process. It provides two services to set
up the container and the bridge and then to start Snort. The docker API client
will be used to trigger any deployment instructions to the docker daemon. When-
ever a new packet arrives at the switch, an ofp event.EventOFPPacketIn event
is generated and a packet in handler will be triggered on this event. Details of
the packet information like a switch IP address, port numbers, source, and desti-
nation addresses are extracted in the network monitoring agent. This extracted
information is used to request the orchestration service to start Snort on the
specified switch. Based on the information received, a specific Snort configura-
tion file will be chosen according to protocol types. The docker API client will be
used to get a container from the available list and execute necessary commands
to run Snort with a selected configuration file in Inline mode. Snort is configured
to report the alerts to a Unix socket. Simultaneously, a script is started to relay
these alerts to the remote Ryu controller. As the existing container is used, a new
thread is started to set up the container and bridge to allocate future requests.
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Fig. 2. Experimental setup in CloudLab

In the flow rule management, any packet entering the switch without corre-
sponding flow rules in the switch will trigger the packet in handler code part in
RYU. Before starting the container, default flow rules should be added in order
to take care of switches where snort inside the container will not be started.
This situation might arise if there is already a container deployed in one of the
switches for this kind of flow. Once the generic flow rules are added, the request
to start snort inside a container is sent to the orchestration service along with
the flow parameters. If the service returns a positive response, the generic flow
rules will be deleted and the flow rules to forward every packet to the container
will be added onto the switch. If the response from the container is negative, no
operation will be done on the generic flow rules.

3.2 Environmental Setup

The proposed system is evaluated with a generic network topology with three
hosts and three switches on a cloud platform (called CloudLab) as shown in
Fig. 2. Cloudlabs is a cloud testbed built for experimenting with real-time cloud,
network, and orchestration scenarios and provides necessary transparency and
control over the nodes deployed in the environment. The switches used are virtual
machines with UBUNTU-18 installed and run OVS-Switch as a daemon. The
Ryu controller, with version 4.34, is run remotely from the topology. The docker
orchestration service, with docker server version 18.09.7 and API version 1.39,
is run alongside the Ryu controller in the same node. The system has a Ubuntu
machine running Ubuntu 16.04.1 LTS version, Intel(R) Xeon(R) CPU E5 with
2.4 GHz. Each switch has 16 GB of RAM with a quad-core processor and we
used Snort 2.9.7.o GRE with Ubuntu 18.04.3 LTS on Docker.

3.3 Experimental Results

We present the experimental results obtained from the evaluation of the proposed
system based on the following metrics: network latency and memory usage. Net-
work latency is an important factor in evaluating the effectiveness of the proposed
framework and memory usage gives us an idea of the system resource require-
ment. The experimental results were obtained in the network topology shown
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Fig. 3. Network latency in CloudLab

Fig. 4. Memory usage in CloudLab

in Fig. 2. Note that attack detection rates are mostly impacted by the Snort
performance with the signature files, which is out of our research scope.

First, the network latency is calculated as the round-trip time (RTT) between
two hosts in the network. The round-trip time accumulates the delay for each link
in the path between two hosts. Network latency captures the delay in switch pro-
cessing time, which includes flow rule and bandwidth update processing times.
In Fig. 3, we measure network latency without containers or with containers
depending on the number of Snort rules (i.e. attack signatures) to be matched
with each packet. As shown in Fig. 3, the network latency increases with the
orchestration service since it requires matching incoming packets with the attack
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signature for intrusion detection. When we deployed only the container with
Snort without any rules, it shows an average of 1.4 ms round-trip time. With
the Snort rules, the network latency was slightly increased and the increase was
impacted by the number and the type of the Snort rules. It includes various fac-
tors: the switch capacity, the packet header processing time, the packet payload
processing time, and so on. In particular, when every packet needs to compare
bytes for malware with every rule configured in Snort, the network latency sig-
nificantly increases according to the number of rules. However, the orchestration
services can bring more benefits over such network overhead as we discussed in
the previous sections.

Second, we evaluate the CPU and memory usage. The memory usage was
obtained using the top terminal utility command. Figure 4 shows the physical
memory used by the controller during the security orchestration service with dif-
ferent numbers of the Snort rules. CPU and memory utilization are noted while
varying the number of rules. The memory utilization gradually increased depend-
ing on the number of the Snort rules. However, the CPU usage remained the
same from 0.3% to 0.5% increases depending on the packet rates and the number
of the Snort rules. Therefore, the memory utilization is gradually increased by
increasing the number of the rules whereas the CPU utilization of the container
remained similar in all cases.

4 Related Work

A number of approaches to security in SDN address controller specific attacks
[11,17,19] by deploying additional defense modules within the SDN controller
to keep track of various API calls or network traffic. The AEGIS [11] framework
addresses security vulnerabilities that arise from SDN applications. It monitors
API calls and usage of core controller modules to avoid any misuse. AVANT-
GUARD [17] and FLOODGUARD [19] focus on delivering data plane solutions
to SDN security.

Many previous approaches have utilized SDN features to detect network
intrusions in SDN. Wang, et al. [18] were the first ones to propose a network
security framework that relied solely on the features of SDN. They proposed
DaMask a framework that uses deep learning to determine if the network is
under attack and deploys network administrator input as the reactive measure
against it. Lim et al. [9] discuss an SDN-based defense against DoS and DDoS
attacks by botnets. The authors send a redirection message to thwart the botnet,
which is powered by OpenFlow protocol to manage DDoS attacks. Braga, Mota
and Passito [2] propose a lightweight DoS detection framework using NOX [8]
controller. They use the concept of IP Flows [5] to detect network attacks.

Enterprise networks are populated with a large number of proprietary and
expensive hardware-based network functions (NFs), or middleboxes [16], which
provide key network functionalities, such as firewall, IDS/IPS, and load balanc-
ing. Hardware-based NFs present significant drawbacks including high costs,
management complexity, slow time to market, and unscalability, to name a
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few [14,15]. Network Function Virtualization (NFV) was proposed as another
new network paradigm to address those drawbacks by replacing hardware-based
network appliances with virtualized (software) systems running on generic and
inexpensive commodity hardware, and delivering NFs as network processing
services. Different control frameworks for virtualized NFs have recently been
proposed to address the safe scaling of virtual network functions [6,7,12,13].
In particular, Pico Replication [12], Split/Merg [13] and OpenNF [7] are all
control frameworks over the internal state of NFs. Pico Replication provides
APIs that NFs can use to create, access, and modify internal states. Split/Merg
achieves load-balanced elasticity of virtual middleboxes, via splitting internal
states of NFs among virtual middlebox replicas and re-route flows. However,
neither Pico Replication nor Split/Merg are loss-free during NF state migra-
tion. OpenNF provides fine-grained control over movement within internal NF
states and enables loss-free and order-preserving movement from one NF state to
another. One significant drawback of OpenNF lies in the fact that it relies on the
central controller to do heavy traffic buffering during state moves. This results
in scalability and safety issues. A second drawback is the triangular routing of
packets, which introduces large traffic overhead and latency. Jacobson et al. [6]
proposed two enhancements to OpenNF: packet-reprocessing and peer-to-peer
transfers. Although packet-reprocessing reduces the amount of traffic that needs
to be buffered, it still relies on the controller to buffer in-flight traffic. Peer-to-
peer transfer eliminates dependence on the controller to buffer, but still suffers
from triangular routing issues. Our migration scheme neither depends on the
controller to buffer, nor performs triangular routing. In addition, VNGuard [3]
was recently introduced for effective provision and management of virtual fire-
walls based on NFV to safeguard virtualized environments. Also, NFV and SDN
techniques have recently been used to overcome the inflexibility and inelasticity
limitations of hardware-based DDoS defense appliances. In particular, Fayaz et
al. [4] proposed Bohatei, a flexible and elastic virtual DDoS defense system, for
effectively defending DDoS attacks.

5 Conclusion

The combination of SDN and NFV has changed our paradigm in networked sys-
tems with flexibility, scalability, and programmability. SDN enables us to control
network behavior in real time and NFV allows us to utilize a virtual middleware
for all services including security. This paper proposes an adaptive orchestration
system to distribute virtual security functions in SDN for intrusion detection.
The system consists of three components to manage a set of virtual security
functions for intrusion detection and response. The virtual security functions
are implemented with Docker and Snort. The proposed system defends network
attacks autonomously and intelligently through real-time orchestration services.
The goal of this framework is to protect the network from various network
attacks through adaptive security orchestration services by using SDN/NFV.
The SDN controller handles topology management by collecting switch statis-
tics and by updating appropriate flow rules on the switches for intrusion response
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when the security functions raise alarms. Our experimental results increase net-
work latency and memory usage depending on the number of the Snort rules
inside each security function. To be efficiently and effectively matched with the
signatures, the proposed system dynamically loads a set of the relevant rules
depending on each traffic type. Our proposed framework makes a significant
contribution in the direction of such intelligent and autonomous defense systems
by using SDN and NFV.
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